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Uniform Convergence of the Free Energy of the 
Classical Heisenberg Model to That of the 
Gaussian Model 
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We show that the free energy of the classical Heisenberg model converges to the 
free energy of the Gaussian in the low-temperature limit. The limit is uniform 
as the field is taken to zero. 
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1. I N T R O D U C T I O N  

We study the classical Heisenberg model defined on a v-dimensional cube 
A = [0, L ]  v c~ 2 v by the Hamiltonian function 

~A,,(h)=-- F~ ~ X(m.g(R+6)-hZSz(R) (1.1) 
R ~ A  cS ~ YY, I,SI = 1 R 

~A,s(h)  is a function on the space ( s .  $2)  A of functions S: A ~ s .  S 2, where 
s .  S 2 denotes the sphere of radius s > 0 centered at the origin in R 3. The 
parameter  h > 0 represents a magnetic field in the z direction. The ground- 
state energy, i.e., the infimum of HA,s(h), which is attained when all spins 
sit at the north pole, is 

EA, s(h ) = ( - 2vs  2 - hs )  IAI (1.2) 

where rAI denotes the number of sites in A. 
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We define the partition function as 

Zs(~, h, A) = f(,.s2~A, eI~IA dS(R) exp[ - / /(54.s(h) - EA,,(h))] (1.3) 

Here dS is the standard Euclidean measure on s. S 2 given in polar 
coordinates by d S =  s 2 sin p do dO and /~ > 0 is the inverse temperature. 
Note that 

.~.~.,(h) - eA ~(h) - ! y~ , --2RcA E [ S ( R ) - S ( R - I - c ] ) ] 2 - I - h E  [ s - S t i R ) ]  
]61 = 1 R 

(1.4) 

It is clear by a simple change of variable that 

z,(fl, h, A)=s2k'~Z,=~(fls 2, h/s, A) (1.5) 

We want to compare the Heisenberg partition function (1.3) with the 
Gaussian partition function 

Zc(fl, h, A ) = f c  1-[ d2z(R)exp[-fl~A.c(h)] (1.6) 
(d( R~A 

where the function ~A,a(h) defined on C A is given by 

h ~A,a(h)=~6 Iz(R)-z(R +(~)12 + ~  lz(R)I2 (1.7) 

By identifying C with the tangent plane of s - S  2 at the north pole, we see 
that 

lira Zs(3, h, A ) = ZG(3, h, A) (1.8) 
S ~ C O  

We are interested here in investigating this convergence in the 
thermodynamic limit, i.e., as I At ~ oe, and in that case study the behavior 
as h approaches zero. Notice that the finite-volume convergence in (1.8) is 
not uniform as h tends to zero. In fact, the right-hand side diverges as 
h ~ 0 .  

To study the thermodynamics, we compute the free energies 

f,(3, h ) =  lim 1 ~ l o g  Zs(fl, h, A) (1.9) 
IAI 

fc(B,h)= lim 1 IAI ~ ~o I--~ log Zc(fl, h, A) (1.10) 

The functions fs and f c  are cont inuous  in 3 > O, h ~> O. ~1) 
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We will here prove the following results. 

T h e o r e m  1.1. For v ~> 1, fi > 0, and h > 0 we have the limit 

lira L(fl, h) = f6(fi, h) 
s ~ o o  

(1.11) 

and the limit is uniform in h as h tends to zero. Thus 

lim lim ffifi, h ) =  lim fa(fl, h) (1.I2) 
s ~ o O  h ~ 0  h ~ 0  

In ref. 2 we proved that (1.11) holds for h > 0. The important result here is 
that the limit is uniform in h. The significance of the theorem is that 
fG(fl, h) can be explicitly evaluated, and is given by 

where 

27c l" 

fG(fl, h) = log r ,  ~ -  - (2~)-v _)E ,,~y log[e(k) + hl  cP'k 

e(k)=4 ~ sin 2 

To see this, go to Fourier variables 

(1.13) 

(1.14) 

s -~/2 ~ ei*Rz(R) (1.t5) 
R c A  

where k varies in the dual lattice, i.e., ki=2~rlA] x/v, r=0 ,  1, 2 ..... JAt ~/v_ 1. 
Then 

z (R)=IAI  1 /2~e - ikRz(k )  (1.16) 
k 

and 

2 k [e(k)+h] I~(k)l 2 (1.17) 

We are here assuming periodic boundary conditions, i.e., we identify 
opposite sides of the boundary of A. It is well known that the free energies 
(1.9) and (1.10) are independent of boundary conditions. 

We have now 

Za(//, h, A) = ~ (1.18) 

and thus (1.13) follows upon taking the limit IAJ --* oo. 
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From (1.5) we can state (1.12) as a low-temperature limit, 

l i ra lira [ f s -  1(/~, h) + log(/~)] 
# ~ o o  h ~ O  

= lim fG(fl = 1, h) 
h ~ O  

= log(2~) - (2~) v [ log[-e(k)] d~(k) (1.19) 
d 

This is a weak form of what we could call the classical magnon approxima- 
tion. The magnon approximation is estimating the magnetization 

1 0 m(#, h)=-# [-~-s fs= l(#, h)] + l (1.20) 

It was proved in ref. 3 that for v i> 3 there is a phase transition in the 
Heisenberg model in the sense that 

lim m(//, h) > 0 for/~ large (1.21) 
h ~ O  

This deep result was proved by using the reflection positivity property of 
the Hamiltonian (1.1). 

On the other hand, for v = 1, 2 it is known (4) that 

lim m(/~, h) = 0 for all/~ (1.22) 
h ~ O  

The magnon approximation, which is still an open problem, states that for 
v ~> 3 the magnetization can be estimated by the derivative of (1.13), i.e., 
we have the following: 

Conjecture. For  v >~ 3 

lim l i m E / ? ( m ( / ~ , h ) - l ) ] = - ( 2 ~ ) v f  e(k) ldVk (1.23) 
/ ~ o o  h ~ O  [-r~,~]~ 

or, stated otherwise, 

lim rn(r h) = 1 (2rc)-v [ a(k)-ldVk+o (1.24) 
;,~o fl  JE-~,~y 

We emphasize that our result (1.19) holds for v ~> 1. Indeed, the integral in 
(1.19) is finite for all v >~ 1, while the integral in (1.23) is divergent for v = 1 
or 2. 
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One should observe that Theorem 1.1 implies that the expectation of 
the energy per unit volume at zero field will converge to its Gaussian value 
as s ~ oo. This result is not implied by the infrared bound. We have, then, 
the following result. 

Let E(fi, h) be the expected thermodynamic energy Corollary 1.2. 
per unit volume, 

Then 

- 6  
h) L = h) 

o p  
(1.25) 

lim lim fiE(E, h ) =  1 (1.26) 
/ ~ o o  h ~ 0  

A result of the form (1.24), but for the plane rotator model (i.e., S 2 
replaced by S 1) was proved in ref. 5. In ref. 2 we proved an upper bound 
of the form (1.24). 

Our proof of Theorem 1.1, which we present in the next section, is 
fairly elementary and does not use the infrared bound. 

An interesting question is whether (1.19) holds if we replace S 2 by 
some other compact manifold which is, say, the boundary of a convex set 
in N3. For such a manifold we can of course again define a Hamiltonian 
similar to (1.4). It is reasonable to believe that the tangent plane 
approximation would still hold, at least for some points on the manifold. 
However, our proof relies on the special symmetry of the sphere. 

2. P R O O F  OF M A I N  T H E O R E M  

As mentioned in the introduction, we proved in ref. 2 that 

lira fs(fl, h)=fG(fi, h) for h > 0  (2.1) 
s ~  oo 

and therefore we only have to consider the uniformity as h--* 0. We will 
prove this by giving an upper and a lower bound to fs(fi, h). The lower 
bound is easy if we observe that for 0 < h ~< ho 

f,(fi, h) >~f~(fl, h0) (2.2) 

This follows since the lhs of (1.4) is an increasing function of h. Hence 
from (2.1) 

lim inffs(~,h)>~fG(fl, ho) for 0<h~<ho (2.3) 
s ~ o o  

Since f~(fl, h) is continuous in h for 0 ~< h, we conclude as follows. 

822/65/1-2-16 
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Theorem 2.1. We have 

lim inff~(fl, h) >>- fo(fl, h) (2.4) 

uniformly in h as h goes to zero. 

The idea in proving the upper bound is similar to the method in 
ref. 2 of reducing the problem to boxes of finite volume. However, it is 
considerably more delicate. In particular, the argument does not extend 
to the quantum Heisenberg ferromagnet. We first write the large box 
A = [0, L]  ~ r 7/v as a disjoint union of cubic boxes Qi of fixed side length 
L 0. We are assuming that L/Lo is an integer. We then show that restricting 
the spins on the boundary ~?Q = Ui 0Qi of all the boxes to be close to the 
north pole only changes the free energy by a negligible amount uniformly 
in s. This almost reduces the problem to a finite volume. We then show 
that one can consider all the spins as being close to the north pole, and 
thus approximate the sphere by its tangent plane at the north pole. That 
is to say that we can approximate the Heisenberg model by something 
smaller than the Gaussian model. 

We first turn to the proof that we can restrict the spins on the 
boundary OQ. 

Define for Ao - A and (2 ~ 8 2 

Z,(fl, h, A, A o, (2) 

(R~A\Ao s.S fs.~ dS(R)) exp[ -fl(-~A,=- EA.=)] (2.5) 

i.e., the partition function with the spins on Ao restricted to s.~2. Let 
(2((Oo) _c S 2 be the solid angle around the north pole given in polar coor- 
dinates by {(0, q~)10~<0~<2~, 0~<q~< ~Oo}. 

I_emma 2.2. If If2(q~0)l denotes the area of Q((Oo), we have 

C )1101 
Z=(fi, h, A) <~ I~(q~o)l Z=(B, h, A, Ao, ~(~Oo)) (2.6) 

for a universal constant c. 
It is in the proof of this lemma that we will rely on the symmetry of 

the sphere. The estimate (2.6) will be an immediate consequence of the 
following two lemmas. 
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k e m m a  2 . 3 .  L e t  S1 . . . . .  '~n ~ $2'  T h e n  

nl_i (Si" S )  d S  = c n ~ V[ (S , .  Sj)  (2.7) 
~S 2i=1 D (i,,j)ED 

where the sum is over pair  decomposi t ions 

D={(il, i2),...,(i,_l,i,)}, of {1,...,n}={il,...,i,}, c n > 0  

if n is even, c, = 0 if n is odd. 

Proof. Consider the Gaussian integral 

f~3 exP [i~=12i( Si" x ) -  x21 dx = F(21,..., )~,) (2.8) 

Then we have 

0__ . . . . .  ~ F(,~I,..., ~.n) 
21= 2 2 . . . . .  2n=O 

i = l  

On the other  hand, we can evaluate the Gaussian integral explicitly, 

)21 F(2~, ..., 2,)  = 7r 3/2 exp 2toc~ (2.10) 
i 1 

Performing the differentiation on F, we obtain the result. ] 

The  second result we need to prove (2.6) is the following estimate, 
which should be intuitively clear. 

I . e m m a  2.4.  Let rij, ri, 1 ~ i ,  j~<n, be nonnegat ive integers. Then  
for 0 ~< q~o ~< ~/2 

dS~ . . . . .  dS .  I(S,-Sj)I r'j l(S,-k)l ~' 
iS2 82 i,j= 1 i= 1 

fo, o ..... ;o, o fi r' i,j=l i=1 

(2.11) 

where/~ is the unit vector in the direction of the z axis. 
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Proof. Denote the integrand in (2.11) by F(S~,..., S~). If ~2+ denotes 
the part of S 2 in the first octant, i.e., f a + = { ( 0 , ( 0 ) 1 0 ~ 0 ~ r c / 2 ,  
0 ~< ~0 ~< g/2 }, then from the inequality 

we get 

. x x >' y z z Is,-Sjl ~ IS, S~l + IS, sJl + I& sjI 

fs2dS, . . . . .  f s2dSnF~8n f~+dS1 . . . . .  fca+dS.F (2.12) 

Now let, for 2~> 1, ~ :  g2+ --+ f2+ be defined by ~x(0, q))= (0, q0/~l). Then, as 
can be easily checked by differentiation, 

F(%.(S1) ..... va(S,)) ~> F(S1 ..... S,) (2.~3) 

for $1 ...... S,  e ~ +. Thus, 

fa+ dS1 . . . . .  fa+ dg,  F(S~ ,..., S,) 

= f~ dO1 dqol 2 sin(2tpl) 

. . . . .  f,;(a+) dO, do ,  2 sin(2q),) F(r/1(,.~1),..., "c~- l(Sn)) 

r - 7 ~ l ~ 2 - - 1 n  

L.,o+, d', ..... L,o+) (2.14) 

where we have used (2.13) and that sin(&o)~<(g/2)2sin(p for 
2>~1 and 0~<2(#~<~/2. If we choose 2=7~/2~o 0 and use [f2(tpo)l= 
2rt(1 - c o s  ~Oo)~<g~bo 2, (2.11) follows from (2.14). | 

Proof of I_emma 2.2. We can of course assume that cp 0 is so small 
that the inner product of two vectors in g2(~Oo) is positive. To prove (2.6), 
expand the exponential e x p [ - f i ~ , , ( h ) ]  appearing in the integrand of Zs. 
In each single term do the integral over the variables S(R) for ReA\Ao. 

F r o m  Lemma 2.3 the remaining terms that all appear with positive coef- 
ficients are of the form in (2.11) without the absolute values. Hence (2.6) 
follows from Lemma 2.4. I 

We are now in a position to prove that we can restrict all the spins to 
be close to the north pole. 
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l . e m m a  2.5. Given ~> 0, and let 0 ~< qOo~ r(4; then there exists 
s o > 0 depending only on e, fi, Lo, and 9o, but not on h, such that if s ~> s o, 
then 

Z,(fl, h,A, OQ, g2(~Oo))~exp[elAl]Z,(fl(1-e),h,A,A, f2(2~Oo) ) (2.15) 

Proof. We denote by Z(Q1,...,Qn) the partition function with 
variables on ~?Q restricted to s-D(q~o) and at least one variable in each box 
Q1 ..... Q,, restricted outside s-f~(2q~o), i.e., in s. S2\s.f2(2q~o), and all the 
remaining variables, on A\(I..)7_ 1 Q~ vo c~Q) restricted to s. f2(2(po). Then we 
have 

Z,(fl, h, A, OQ, (2((po)) 

<~Z~(fl, h ,A,A,  f2(2~po))+~Z(Qi)+ Z Z(Qi, Qj)+ ... (2.16) 
i i < j  

It is clear that for the configurations integrated over in order to compute 
Z(Qi) we have 

~A--EA >~ ~ [S(R+~5)-S(R)]z>~C(Lo, (po)S 2 (2.17) 
R , o  s 

where C(Lo, q~o) > 0. Thus we have 

Z(Qi) <<. exp[ -eflC(Lo, q)o)S 2 ] Zs(fl(1 - e), h, A, A\Q,, f2(2q~o)) 

~< exp[ - eflC(Lo, q~o)S 2] 1~(2~oo)1 /s(/~(1 - ~), h, A, A, ~(2q~o)) 

(2.18) 

where in the last estimate we have used an obvious generalization of 
Lemma 2.2. We can now clearly choose So such that for s i> So 

Z(Qt) <<. eZs(fl(1 -g ) ,  h, A, A, Q(2~oo) ) (2.19) 

Similarly, we get for the same choice of So 

Z(Q1,... , Q,) ~< enZ~((1 --e)fl, h, A, A, (2(2q~o)) (2.20) 

Thus, from (2.16), 

Zs(fl, h, A, OQ, s ~< (l + e )lal/r; Zs( (1 - e ) fl, h, A, A, (2(2~Oo)) 

from which (2.15) immediately follows. | 

(2.21) 
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Finally we can now prove the upper bound on the free energy. 

T h e o r e m  2.6. For any 6 > 0 there exists So > 0 depending on 6 such 

(2.22) 

all 3, /~, Lo, and 

that that if s >~ So 

L(/~, h) ~< fG(/~(1 - 6), h) + 6 

Proof. From Lemmas 2.2 and 2.5 we can, for 
0 ~< ~Oo ~< ~/4, find So such that for s/> So 

I~ ! ],ae, Zs(fl, h,A)<<.[_lE2(po)] j exp[elAl]Z,(fl(1-a),h,A,A, E2(2~po)) (2.23) 

By choosing g0o small enough and comparing the sphere by, say, 
stereographic projection with the tangent plane at the north pole, we easily 
get 

Z~(~(1-6/3),h,A,A, E2(2cpo))<<,exp[~,A,]ZG(~(1-6/a)2, h,A) (2.24) 

Now choose L~ so large that (we can assume ]AI as large as we please) 

c [ c_ ] 'A'/L~o2vL~o-1 
[ 1~2(~Oo)1 ]'~ ~< L,~9(~Po)l j <exp [~ [AI l (2.25) 

For this L0, the above chosen q~0, and e = 6/3, choose So such that (2.23) 
holds for s >t So. Then from (2.24) we have for s/> So 

Z~(~, h, A)<~exp[61A[] Z~(/~(1 - 6 / 3 )  2, h, [A]) (2.26) 

Taking the thermodynamic limits on both sides gives (2.22). 1 

Proof of Theorem I. 1. We only have to argue that 

lim sup f~(/~, h)~< fG(/~, h) (2.27) 
s~cr 

uniformly as h goes to zero. This immediately follows from (2.22) since 
fG(/3, h) is equicontinuous in h as h goes to zero. 1 

Proof of Corollary 1.2. We use (1.19) and the fact that fs= 1(~, h) is 
a convex function of/~. Hence, for any e > 0 we have 

i s= l(J ~, h) - - i s_  1(/~(1 -[- 8), h) fs= 1(/~( l -- 3), h) - - i s=  1(/~, h) 
< fiE(E, h) < 

8 

(2.28) 
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Now let us put 

and 

L 1(~, h) = -log(/~) + c(/~, h) (2.29) 

lim c(fl, h )=  c(fi) 
h~O 

(2.30) 

Then (1.19) implies that the limit 

lira c ( f i ) = c ( ~ )  exists 
fl-*oz 

From (2.28) we have 

[log(1 -t- e) -t- c(fl) - c(fl(1 - a))]/e 

< lim flE(fl, h) 
h~O 

< [- - l og (1  - e) + c(fi(1 - e)) - c(f l)] /e  

Hence from (2.31) we have 

log(1 + e) 
< lim lim flE(fl, h) < 

Taking a ~ 0 now yields (1.26). 

- l o g ( l  - e )  

(2.31) 

(2.32) 
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